
RESEARCH INTO THE USABILITY AND
PRACTICALITIES OF BLOCKCHAIN TECHNOLOGY
FOR THE AIR TRANSPORT INDUSTRY

WHITE PAPER

FLIGHTCHAIN

CONTENTS

INTRODUCTION
Project background	 3

Why flight data?	 4

Why Ethereum and Hyperledger?	 4

Why Blockchain?	 4

FlightChain conceptual overview	 5

Whitepaper contributors	 6

Glossary	 6

FLIGHTCHAIN – KEY LESSONS
Governance	 7

Maturity of technology	 8

Smart contracts	 9

System security	 10

Private vs public	 11

Data privacy	 11

System performance, scalability & resilience	 12

CONCLUSIONS
Conclusions	 13

APPENDIX A – ETHEREUM
VM system requirements	 14

Network requirements	 14

Node architecture	 15

Smart contract	 16

APPENDIX B – HYPERLEDGER – FABRIC
VM system requirements	 18

Smart contract	 18

APPENDIX C – FLIGHTCHAIN SMART CONTRACT
Logic flow	 19

2 FLIGHTCHAIN WHITE PAPER | © SITA 2017

NEW FRONTIERS PAPER | © SITA 2017 3

During the course of this project the answers to the
following questions were sought:

•	 How do you setup, secure and manage a
permissioned blockchain?

•	 Who manages and controls permissions and
access?

•	 How do you write a smart contract and who signs
off on smart contract logic - is it similar to an
Airports Council International (ACI) or International
Air Transport Assocation (IATA) standard?

•	 How do you update a smart contract?

•	 How do we keep some data private and some
public?

•	 Is there a need for an air transport industry vertical
blockchain – one blockchain running many apps, or
one blockchain per app?

•	 If there is a trusted transparent verifiable ledger of
flight data, does it change anything?

•	 What are the comparisons and contrasts between
Hyperledger Fabric and Ethereum blockchain
offerings?

PROJECT BACKGROUND
Blockchain has been has been heralded as a
transformational technology. While several
use cases have been identified by airlines and
airports, research is required to establish the
suitability and practicalities of using blockchain
to establish a ‘single source of truth’ for various
data sets in use across the highly-connected
air transport industry. SITA recognizes that
there is also a real need for the industry to
take the right approach, to ensure governance,
standards, compliance, security and more.

For this reason, SITA Lab, the technology research team at
SITA, initiated a project to investigate the provision of a single
version of the truth for flight status data. Called FlightChain,
this is an air transport industry blockchain research project
established by SITA Lab and defined in conjunction with
Heathrow Airport Holdings Limited (HAL) and International
Airlines Group (IAG). In addition, Geneva Airport, and Miami
International Airport joined the project part way through,
demonstrating the scalability of the platform.

In this research, FlightChain is a private permissioned
blockchain (implemented on both Ethereum and Hyperledger-
Fabric) that stores flight information on the blockchain, using
a smart contract to arbitrate potentially conflicting data. Data
from LHR, BA, GVA and MIA is merged and stored on the
blockchain.

RESEARCH QUESTIONS

INTRODUCTION

FLIGHTCHAIN WHITE PAPER | © SITA 2017

NEW FRONTIERS PAPER [DOCUMENT DESCRIPTION FOOTER) | © SITA 20134

WHY FLIGHT DATA?
As noted above, the focus of this project was on blockchain
technology. We selected flight data as a use case to test
blockchain’s capabilities, to explore implementation
complexity, and to identify the performance of blockchain. In
addition to the learning objectives we selected flight data for
the following reasons:

•	 Flight data contains no Personally Identifiable Information
(PII) or commercially sensitive data which means partner
airlines and airports are comfortable sharing this data for
the project.

•	 The “flight data problem” is a well-known issue in the
industry - namely, there are multiple copies of subsets of
flight status data and the data that does exist is not easily
accessible by all parties. There is no single source of the
truth about all flight data.

 This lends itself to the use of blockchain – there are multiple
writers of data and there is a need for a distributed data set.

WHY ETHEREUM AND HYPERLEDGER?
This project was implemented on both Ethereum and
Hyperledger Fabric. Implementation on multiple blockchains
allowed the team to identify aspects of blockchain (good and
bad) which may apply to all implementations and which are
specific to a vendor.

These blockchain implementations were chosen because
they support smart contracts and private permissioned
blockchains. In addition, Ethereum is a well-established
implementation of blockchain, and Fabric has significant
backing from the Hyperledger consortium, in particular, IBM.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

WHY BLOCKCHAIN?
There are several established technologies available to
solve the “flight data problem”; a centralized database
(e.g. SQL) with a CRUD API; a decentralized database
(e.g. Cassandra, Hazelcast).

Blockchain is also an appropriate technology choice for
the following reasons:

•	 Distributed immutable ledger – Blockchain
implementations provide a cryptographically
immutable transaction ledger that is distributed
to all participants in the network. Thus all
participants will have a complete copy of all
transactions on the ledger and have confidence that
the record of transactions is true and consistent for
all participants.

•	 Multiple writers – Blockchain provides a
mechanism for multiple writers to update a
common data set, where the data set is visible to all
participants in the blockchain.

•	 Absence of trust – Blockchain has advantages
over centralized/distributed databases in the case
where there is an absence of trust between writers
of the database. This is because all transitions
are immutably recorded and shared on the ledger
such that readers and other writers can decide
whether to accept or ignore the transactions of any
participant.

•	 Shared Control – The use of a smart contract
allows different organizations to share control
of the data through an approved and shared set
of business rules codified by the smart contract.
This disintermediation approach enables shared
control of the data and presents a key differentiator
in contrast to the trusted intermediary model
exhibited by a centralized or decentralized
database.

NEW FRONTIERS PAPER [DOCUMENT DESCRIPTION FOOTER) | © SITA 2013 5

FLIGHTCHAIN CONCEPTUAL OVERVIEW
The FlightChain project consisted of:

•	 A private permissioned blockchain

•	 A smart contract running on the blockchain to merge
flight data

•	 A source of operational real-time flight data from multiple
airlines and airports.

ACRIS Data

Peer

Ledger

IAG/BA

AIRLINE
FLIGHT

OPS

ACRIS Data

Peer

Ledger

GVA

AIRPORT
AODB

ACRIS Data

Peer

Ledger

LHR

AIRPORT
AODB

AC
R

IS
 D

at
a

Peer

Ledger

SITA

AIRPORT
AODB

AIRPORT
AODB

Peer

Ledger

MIA

AC
R

IS
 D

at
a

FLIGHTCHAIN WHITE PAPER | © SITA 2017

This is illustrated below. As each operational data-source
pushes flight data into the blockchain, the smart contract,
running on each node, validates the data and writes this data
to the blockchain ledger. The resulting set of data for a flight
combines data from the operating airline, departure airport
and arrival airport. This full data set can be queried from the
blockchain.

During this project more than two million flight changes were
processed by the smart contract and stored on FlightChain.

6

Name Title

Kevin O’Sullivan Lead Engineer, SITA Lab

Sholeh Behzadpour Innovation Technologist, IT Futures, HAL

Stuart Harwood Heathrow Automation & Innovation, HAL

Harvey Tate IAG Innovation, IAG

GLOSSARY

Term Explanation

AODB Airport or Airline Operating Database. This is the source for flight data from the airline or airport.

ACRIS This is an ACI standards group. The flight data is stored in the blockchain in ACRIS data format. See
http://www.aci.aero/About-ACI/Priorities/Airport-IT/ACRIS

Bitcoin Blockchain This is the original blockchain network, supporting the bitcoin cryptocurrency. It is a public network.
It does not support smart contracts.

Consensus This is the term to describe how the distributed nodes in a blockchain network come to agreement
on transactions submitted to the network. There are several different consensus algorithms. See
glossary terms “Proof of …”

DApp Distributed App. An application using smart contracts are known as a Distributed App. A DApp may
also include a user interface (UI) and some sort of distributed storage.

DLT Distributed Ledger Technology - another term for Blockchain

Fabric Fabric is one of the blockchain implementations under the Hyperledger consortium. It was developed
by IBM and open sourced through Hyperledger.

Ethereum Ethereum is an open source blockchain. There is a public Ethereum network. It can also be run as a
private permissioned network (in this FlightChain project it was run as a private network). Ethereum
supports smart contracts. https://www.ethereum.org/

Hyperledger Hyperledger is a consortium of cross-industry companies working to advance maturity blockchain
technology for use in enterprise space. Companies such as IBM, Accenture, Intel, American Express,
etc. are open sourcing their own developments to speed up adoption of blockchain technology and to
solve common problems.

Parity Parity is an Ethereum client. An Ethereum network is made up of a series of clients, connected in a
peer-to-peer manner. There is no Ethereum server. https://parity.io.

Proof of Authority This is the consensus algorithm used in the Ethereum implementation of FlightChain. It relies on at
least two nodes which have the authority to create new blocks.
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains

Proof of Stake This is the consensus algorithm that relies on owners of bitcoin (or other cryptocurrency) to approve
transactions.

Proof of Work This is the consensus algorithm used on the bitcoin blockchain. It relies on miners solving mathematical
problems (doing work). This may be computationally expensive for the miner, but simple for others to
verify. It is a defense mechanism against bad actors manipulating the blockchain data.

Smart Contract A smart contract is a software program that runs on the blockchain. It resides on all nodes and
when data is written to the blockchain, it processes a set of business rules. The results of the smart
contract are written on the blockchain.

WHITEPAPER CONTRIBUTORS

FLIGHTCHAIN WHITE PAPER | © SITA 2017

In a private network, things are very different. Participants
join by invite only and different participants may have
different levels of access. This means that some entity
is responsible for the governance – issuing invites to
participate, managing identity, access and permissions.

Typical governance responsibilities include:

•	 Adding an account or organization to the network, so that
organization can perform transactions on the network

•	 Defining and managing permission levels

•	 Deploying and upgrading smart contracts on the network

•	 Adding nodes to the network

•	 Managing upgrades to the system

•	 Revoking access

The requirement to have governance oversight is a
significant difference from a truly distributed decentralized
blockchain. It is obviously important that participants trust
the governing entity, and have visibility of, and a stake in,
the rules governing the network. It should also be noted
that the governance over a network does not imply absolute
control because some actions still require consensus of other
participants – therefore it should be seen more as a caretaker
role (albeit a caretaker with lots of privileges).

Industry organizations like ACI, IATA, or SITA could act as
the trusted organization to setup and manage a private
blockchain for the air transport community.

7

Together the team has compiled the key
lessons from FlightChain from airline, airport
and technology supplier viewpoints.

They are shared here for the air transport
industry to consider as it examines the use
cases and benefits of the blockchain for
airlines and airports. It is important to note
that these key findings relate to the use of a
private permissioned blockchain and do not
necessarily apply to public blockchains.

GOVERNANCE

In a public network there is no central leadership or control
over the direction of the network – it is truly distributed and
decentralized. This can result in slow decision making about
the future direction of the blockchain, heated debate and
splintering of a group. An example of this is the contention
between the bitcoin development team (also known as Bitcoin
Core) and the major mining consortiums which resulted
in a fork of bitcoin in August 2017. As a consequence, two
bitcoin blockchains emerged. Similar forks have happened in
Ethereum (but in that case the fork was to reverse a hack of
the network).

 

FLIGHTCHAIN – KEY LESSONS

KEY LESSON: A private permissioned
blockchain still needs governance and
operational oversight. Simply because it
is distributed and decentralized does not
mean it is self-managing. It is important to
choose a governance model/organization
that does not compromise the integrity of
the blockchain.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

NEW FRONTIERS PAPER [DOCUMENT DESCRIPTION FOOTER) | © SITA 20138

MATURITY OF TECHNOLOGY

We are still relatively early in the lifespan of blockchain
technology, and certainly very early when it comes to
repurposing it for uses outside of bitcoin. Ethereum was
launched in 2015, and Hyperledger Fabric v1.0 launched in
2017. This is reflected in the lack of tooling when it comes to
setting up, managing and monitoring a blockchain.

FlightChain was developed using a ‘roll your own’ approach
to deploying Parity and Fabric onto AWS Ubuntu VMs, in
order to get some direct experience and understanding of the
complications of implementing a blockchain. One of the key
lessons of FlightChain is that it would be complex to scale a
network to many participants, especially when onboarding
new airlines and airports after initial setup. Setting up a node
consists of multiple manual steps for installing software,
creating accounts, distributing this information to pre-
existing nodes, restarting those nodes, etc. It is a process
that is prone to error and resists automation.

KEY LESSON: It is still early days in
the technology lifecycle for blockchain. A
blockchain can be complex to set up and
manage, especially when compared to point
and click cloud services like AWS or Azure.
Look for ‘blockchain-as-a-service’ offerings,
and beware of vendor claims around maturity.

Either ensure you have correct skillsets, or
use ‘blockchain-as-a-service’ offerings or
simply wait until the technology matures.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

However, there are also several blockchain-as-a-service
(BAAS) offerings, which should simplify this operational
overhead.

•	 Microsoft Azure – Microsoft have a relationship with
Ethereum and offer Ethereum (and some other blockchain
implementations) on Azure.

•	 IBM Bluemix – IBM have a Fabric implementation.

Of course, even though the blockchain is offered as a
service, there will still be requirements for the service to be
appropriately managed, maintained and governed per the
requirements of the community using the blockchain.

Overall, any organization looking to deploy a blockchain
solution needs to ensure the correct skillset is in-house, or
consider a BAAS offering, or else wait for the technology to
mature.

It should also be noted that there is a lot of activity around
making blockchain more enterprise friendly and it is evolving
rapidly through multiple competing vendor approaches.

9

not be able to update the flight data for a British Airways flight
or Munich Airport would not be able to update the flight data
for a flight from Heathrow to Madrid. See Appendix C for the
complete logic of the FlightChain smart contract.

Industry standards as smart contracts?

While the current FlightChain smart contract logic is very
simple, it is easy to see this evolving and becoming more
sophisticated in how it manages conflicting information. As
new rules are defined, there must be consensus amongst
participants before a new smart contract is created and
deployed on the blockchain.

A suggested way to achieve this consensus is through
industry bodies such as ACI and IATA. However, instead of
the current approach to developing industry standards,
which is a taskforce to discuss and create a document (a
recommendation or a resolution), these taskforces could
instead create something much more deterministic – the
smart contract itself. All parties could review the actual code
implementation of the smart contract and once signed off it
would be deployed. This process is a significant improvement
as it avoids variations in interpretation of the documented
standard which often occurs as a written document is
misinterpreted by many different airlines, airports and IT
suppliers.

Legal status of smart contracts

The term ‘smart contract’ is a misnomer, and it does not
necessarily imply any special legal status. (Smart contract is
also used in conjunction with terms such as ‘programmable
economy’ and ‘code as contract’). A smart contract has
no special legal status, and certainly, in the near term any
business relationship between parties using data on a
blockchain will need to be backed by standard due diligence
and negotiation of terms and conditions. That said, one of
the expectations of blockchain is that smart contracts will
streamline B2B engagement by removing friction associated
with establishing trust between parties.

SMART CONTRACTS

A smart contract can be viewed simply as a set of business
rules that are executed as a transaction on the blockchain. A
blockchain is deployed onto the network and, in the case of
Ethereum, runs on all nodes (Fabric has a slight variation).
This means that all participants can have confidence that not
only is the data consistent on all nodes in the network, but
how users transact and interact is the same too – nobody gets
preferential treatment.

When executing a smart contract, the participant can supply
input parameters. The smart contract must be deterministic
and executed on multiple nodes (the validator nodes).
Assuming all nodes agree with the output of the transaction
(consensus is achieved) then the transaction output is
committed to the blockchain. Executing a smart contract
typically updates the ‘world state’ of the blockchain, either by
transferring assets, or in the case of FlightChain, updating
flight data.

In FlightChain, the smart contract is responsible for
applying the business rules about which an entity can update
particular elements of the data. For example, Ryanair would

KEY LESSON: Smart contracts are
programs that can update the state of
data on the blockchain and are a key
element to most enterprise blockchain
use cases.

KEY LESSON: Smart contracts can be
complicated to define, update, redeploy
and get all participants into sync again.
Strong lifecycle management is required.

KEY LESSON: Smart contracts
have no legal status, however industry
standards could be encoded in smart
contracts.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

10

Permission to transact

The above attack would allow a bad-actor to have read-only
access to the data. In order to transact and participate in the
network by executing transactions, a bad-actor needs to have
an account and have sufficient privileges and (depending on
the nature of the network) sufficient cryptocurrency.

This can be done by getting administrator access and creating
such an account, or simply getting access to an existing
participant’s account.

It is important to note that the attack vectors are similar to
those on a traditional enterprise system, and similar defenses
and monitoring need to be in place. The added complication of
a distributed system like a blockchain network is that you are
relying on all participants to have these defenses in place. It
is not necessary to breach all nodes on a network, only one.
As with all security, the chain is only as strong as the weakest
link.

SYSTEM SECURITY

In a private permissioned blockchain, failure to appropriately
secure the network will result in leak of data and potentially
loss of control of assets stored on the blockchain. So of
course, security is as important for a private blockchain as it
is for any other corporate IT system.

Securing access to the blockchain

Basic access to participate in the blockchain is managed by
software configuration and network configuration. Each node
has its own blockchain node address (known as an enode in
Parity) and typically each node runs on its own server, so has
its own IP.

The network configuration lists the valid enodes, therefore to
breach this level of security a bad actor would need to modify
the configuration on one node (note – not all nodes, just one)
to add their node address to the permitted list. In addition, the
bad-actor would also need to modify the firewall rules on that
node to allow communications between the now breached
node and the bad node.

This type of attack would allow someone to replicate all data
on the network.

KEY LESSON: All the standard
enterprise security risks apply to
blockchain, with the additional complexity
of managing a system distributed across
multiple enterprises. It is only as secure
as the weakest link.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

11

PRIVATE VS PUBLIC

A private blockchain is functionally the same as a public
blockchain (e.g. distributed peers, ledger of events, smart
contracts, cryptocurrency), with the principal difference being
over who can participate and the consensus models.

Public Network

In a public blockchain like Bitcoin or Ethereum, anybody can
join, add a node, be a miner, participate in consensus, view
transactions and (on Ethereum) execute smart contracts. A
public blockchain is truly distributed in that no individual or
corporation controls access. Everybody has access to the
network, and has visibility of all data on the network.

One benefit of a public network is that due to the large
number of nodes participating, it is computationally very
expensive to take over and manipulate the network to alter
the ledger. While this is commonly referred to as ‘more
secure’ it is more accurate to refer to it as ‘more tamper-
proof’. There are many examples of security breaches that
result in loss of cryptocurrency – a blockchain is not a magic
security blanket.

The public nature of the data in blockchain is one of the
downsides when viewed from an enterprise perspective.
In most cases in a business network it is a regulatory or
commercial requirement that access to data is limited to
authorized people or organizations. In a public blockchain,
this is hard to do.

Private Network

A private network addresses these enterprise concerns. It will
be setup by an individual or an organization and participants
require an invitation to join. A private network is also typically
a permissioned network. Different participants have different
levels of access – e.g. view only, transact, verify.

In a private network, the consensus model can also be radically
different from the typical “proof of work” consensus models
of bitcoin blockchain, or public Ethereum blockchain. This
type of network can use “proof of authority” which removes
the requirement for mining and increases the transaction
throughput.

It should also be noted that a private permissioned network
is no longer a truly distributed network because some entity
must be ultimately responsible for its governance - and
therefore in a position of trust.

DATA PRIVACY
In FlightChain, the data was stored unencrypted on the
blockchain. And of course, the nature of blockchain is that all
participants have all the data on blockchain. This is fine for the
specific needs of this group for this research project, but in
many other cases it will be necessary to encrypt the data, or at
least provide a mechanism for limiting access to the data.

In Ethereum the options are limited – the data must be
encrypted at source and stored encrypted on the blockchain.
Whoever needs the data must have the private key to decrypt
it after reading it from blockchain. This adds a processing
overhead, albeit not an overhead that happens on the
blockchain. It also adds the overhead of key management
between participants.

Hyperledger Fabric has a different approach and subsets of
participants on a blockchain can set up their own channel for
sharing sensitive data. This data will not be stored on the main
blockchain, and is kept private between participants on the
channel. An example of this would be the sale of a property –
the transfer of ownership would be stored on the main chain as
this is public information, but the cost of the property stored on
a separate channel and kept private between seller and buyer.

KEY LESSON: For most enterprise
use cases a private managed blockchain
network will be required, not a public
network.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

12

SYSTEM PERFORMANCE, SCALABILITY &
RESILIENCE

Performance

One of the major questions about blockchains is the
transaction throughput and the scalability. While a
blockchain can scale to thousands of nodes by design,
this does not correlate to an improvement in transaction
throughput, in fact, it can often cause a longer transaction
execution time because the transaction has to execute on
more nodes for consensus to be achieved.

Ethereum Parity

A single Parity node can typically handle about 30
transactions per second. To improve this performance,
transactions can be load-balanced across multiple nodes.
Below is a diagram indicating the transaction throughput at
various levels of load-balancing. Of course, real results will
vary based on the complexity of the smart contract (if any).

This is well below the requirements of a real-time transaction
system like a passenger services system (PSS) or a payment
system. However, scalability and throughput on blockchain is
an area of much research at the moment.

Hyperledger Fabric

The stated aim for Fabric is to support 100,000 transactions
per second. Fabric has a very different architecture to Parity
to support this. With Fabric, there are dedicated Endorsement
Peer nodes for running the smart contracts (known as
chain codes). Consensus is achieved on these nodes before
the data is written to the ledger via separate Ordering
nodes. Endorsement Peers can be scaled arbitrarily and
independently of the Ordering nodes.

Resilience and maintaining data integrity

A blockchain is a distributed system. It is designed to have any
number of participating nodes, and each node generally has
a copy of all the blockchain data. So, what actually happens
if a node goes down and then re-joins the network – how
is integrity of data preserved and what is the source of the
truth?

Consider the scenario where a node is disconnected from
FlightChain for a period of time: the current state of the
blockchain is defined by the ‘BlockNumber’ – that is the
number of blocks of data that are chained. Each time a
block of transactions is added to a blockchain this number
is incremented. When a node joins a blockchain for the first
time, or rejoins after a period of being disconnected, it will
identify what the current network BlockNumber is and it will
request data from its peers to bring itself back into sync with
the rest of the network. This resync is an automatic process
on a blockchain. Of course, during this period this node will
not have the correct version of the truth (flight data in the
case of FlightChain).

Because of this any external business service relying on
the data will need to be aware that querying data from
this particular node may result in incorrect data until it is
fully synced. Therefore we may interpret the blockchain as
providing a single version of the truth, eventually. There
are solutions for this problem and they generally rely on a
business service relying on an off-chain copy of the data and
resorting to on-chain data if/when independent validation is
required at a subsequent stage.

KEY LESSON: Frequency of block
mining is a limit on performance. In a
private network this is largely mitigated.

KEY LESSON: Fabric is more
complicated than Ethereum, but it is
designed for high throughput.

KEY LESSON: A distributed system
is resilient by nature. But while we can
say the network as a whole holds a single
version of the truth, for an individual node
we can only say ‘it holds a single version of
the truth, eventually’.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

Number of Nodes

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

1 62 84 10

27
50

103

148

173

211

13

FlightChain has demonstrated that blockchain is a viable
technology choice for the use case of providing a single
source of truth for data, specifically real-time flight
information. While it could be argued that there are
alternative and proven technology choices for simply sharing
data (e.g. Cassandra or Hazelcast), the use of blockchain, and
smart contracts in particular, provides ‘shared control’ of the
data set and improved trust in the data.

It is still early in the technology lifecycle, and even during
this project there were many changes made to the Ethereum
and Fabric platforms as both are under rapid evolution.
The current lack of maturity in the toolsets for operation
of a blockchain makes it complicated and error prone to
implement a network across many different airlines and
airports. For this reason, Blockchain-as-a-Service is a
compelling option.

While the FlightChain smart contract is relatively simple,
it provided an important role in controlling access to the
data. In a real-world network, it is important to manage the
changes to this contract as it affects all participants. It may
be necessary for signoff from industry bodies such as ACI and
IATA. One can imagine a future where industry standards are
written directly as smart contracts instead of published as
PDF documents.

While no decisions or commitments have been made, logical
next steps for this project would be to:

•	 Add many more airlines and airports to FlightChain to get
a more complete data set.

•	 Add more sophistication to the FlightChain smart
contract.

•	 Identify a business model to fund the operation of
FlightChain.

Airlines, airports and other industry stakeholders interested
in the FlightChain project can contact the team lead, Kevin
O’Sullivan at SITA Lab.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

14 FLIGHTCHAIN WHITE PAPER | © SITA 2017

AZURE VPC

Ethereum Node - LHR
Azure DS2 V2
Linux Ubuntu

REST
API

LHR DATA
CENTRE

LHR AODB

VM

VPC CONTAINER

Ethereum Node
SITA1

Ethereum Node
SITA2

Ethereum Node
SITA3

TCP 30303 TCP 30303

HTTPS
SOAP XML

HTTPS
REST JSON

LHR
Adapter

Ethereum Node
IAG/BA

BA
Adapter

BA DATA
CENTRE

BA
AODB

TCP
TRAFFIC,

PORT 30303

HTTPS
REST JSON

SITA DATA
CENTRE

SITA Flight
Info Service

TCP
TRAFFIC,

PORT 30303

TCP
TRAFFIC,

PORT 30303

SITA
Adapter

TCP
TRAFFIC,

PORT 30303

VPC

NETWORK
REQUIREMENTS
A blockchain is a distributed
network, and the nodes all
need to communicate with
multiple other nodes to
ensure the data is kept in
sync. In the case of Parity,
peer-communication is
over port 30303 (by default).
Therefore, the only network
firewall requirement is
that this port must be open

This section contains
some low level technical
details on the Ethereum
implementation of
FlightChain, which will be
most relevant to architect,
developer and support
teams.

FlightChain was
implemented using Parity,
one of several Ethereum
client apps. The information
below is specific to this
client, although the
implementation details will
not significantly change with
other clients (e.g. geth).

VM SYSTEM
REQUIREMENTS

CPU
The system requirements
are relatively modest. For
FlightChain, each node is
running on an Azure DS2 V2,
or an AWS t2.small instance
– and even then, the CPU
consumption is generally
less than 10%. Although,
it must be noted that the
transaction throughput for
FlightChain at this stage is <
5 per second.

Memory
Equally the memory
requirements are quite low
– the parity client consumes
< 0.5 Gb. This of course
will vary depending on the
number of smart contracts
deployed and the use of
those contracts, and the
number of transactions
recorded over time.

APPENDIX A - ETHEREUM
Disk Requirements
The disk space requirement
has a direct correlation with
the number of transactions
(in FlightChain, the number
of flight updates) - the more
flight data recorded, the
more space required. Disk
utilization is efficient, and
there is not any significant
overhead required by Parity
beyond the data passed to
the FlightChain contract.
As an illustration, three
months of flight updates
for all flights into and out of
London Heathrow, Geneva
Airport, Miami International
Airport and San Francisco
International Airport (about
1.3m transactions) occupies
approximately 11Gb.

and each node should see
multiple other nodes. It is
not a strict requirement
that all nodes see all other
nodes, but the more nodes
in communication with each
other, the more robust and
resilient the network.

On each node, the Parity client
also listens on port 8545 for
JSON RPC calls to interact
with the blockchain data.

NEW FRONTIERS PAPER [DOCUMENT DESCRIPTION FOOTER) | © SITA 2013 15FLIGHTCHAIN WHITE PAPER | © SITA 2017

NODE ARCHITECTURE
To the right is the
architecture for each node in
the network. In FlightChain,
each node is an Ubuntu
VM running the following
processes:

•	 Parity - The Parity
clients running across all
the nodes form the p2p
Ethereum network.

•	 Node JS - Node bridges
to Parity over the JSON
RPC interface and
exposes a GET/PUT/
PATCH API interface
to the Adapter. The
Node app also receives
all transaction events
emitted by Parity and
writes flight transaction
updates to CouchDB for
fast lookup of data.

•	 Couch DB - Opensource
database used to store
a copy of the flight data.
This is used as an index
into the blockchain for
fast lookup of data.

•	 Adapter - The adapter
is a bespoke process
that interfaces to the
airline or airport AODB
system and converts
the data into the ACRIS
standard data format and
merges changes into the
FlightChain network.

FLIGHTCHAIN
NODE

PEER
NODE

TCP &
UDP TRAFFIC,

PORT 30303

TO AIRLINE/
AIRPORT AODB

SYSTEM

COUCHDB

PEER
NODE

PEER
NODE

PARITY

HTML5
USER

INTERFACE

ADAPTER

NODEJS
Flight

Create/Update
events

JSONRPC

GET/PUT/PATCH
ACRIS Flight Data

(Port 8080)

SOLIDY SMART
CONTRACT

ANGULAR2
WEBAPP

REST
API

HTTP
TRAFFIC

16

Contract Lifecycle
This is the typical lifecycle of developing/invoking a smart
contract. It assumes that you already have an account on the
blockchain, along with some Ether.

•	 Write smart contract using solidity code (.sol files)

•	 Compile to bytecode and generate a .abi stub file (which
contains details on how input/output is encoded)

•	 Deploy the smart contract bytecode to Ethereum
blockchain

•	 Use .abi stub files to write code (e.g. JavaScript) to invoke
the smart contract and listen for output events.

When updating the smart contract code and redeploying it,
it is deployed to a new transaction address. And the pre-
existing smart contract is not removed (after all, it is stored
as a ledger entry and the ledger is immutable). Therefore,
an important consideration is to ensure that all participants
in a blockchain app are running against the same version
of the smart contract. This is a significant management
overhead, external to the blockchain operation itself, and can
be especially complicated to manage with a large number of
participants.

SMART CONTRACT
Ethereum uses a language called Solidity for Smart
Contracts. Solidity is statically typed language supporting
inheritance and importing of third party additions through
library plugins. Solidity programs are compiled to bytecode
and then deployed onto Ethereum blockchain. When compiled
they also create an application binary interface (ABI) stub file
which can be used to simplify invocation of the contact. When
deployed on the blockchain, each smart contract has its own
address.

There is no practical limit to the number of smart contacts
that can be deployed on an Ethereum blockchain. As of
September 2017, there are 1.7 million contracts deployed on
the public Ethereum network.

Input / Output
When invoking a smart contract, the client app can pass in
parameters. These parameters are defined in the ABI file.
The contract is invoked by sending the parameters to the
local Parity client app on a single node. Ethereum will then
distribute and invoke the transaction on all validating nodes.
The smart contract can also generate output events. These
events will be fired on every node – these events can be
captured to get error output or to store generated output in a
side DB for faster lookup.

FLIGHTCHAIN WHITE PAPER | © SITA 2017

Solidity language:
https://solidity.readthedocs.io/en/develop/
Truffle framework:
http://truffleframework.com/docs/getting_started/project
Parity JSON RPC:
https://github.com/paritytech/parity/wiki/JSONRPC-parity-module

17FLIGHTCHAIN WHITE PAPER | © SITA 2017

This section details the implementation specific details and
notes related to Hyperledger Fabric v1.0. Fabric has a specific
focus on permissioned blockchains for enterprise use at a
large scale. The architecture of Fabric V1.0 is quite different
to Parity in that consensus is separated from the ledger
storage and there is a concept of ‘channels’, which are private
ledgers between parties that need privacy. This design
supports the key goals of Fabric - confidentiality, security and
scalability.

APPENDIX B - HYPERLEDGER – FABRIC
The diagram below illustrates the basic flow in Fabric;

•	 An application invokes a smart contract (known as
ChainCode in Fabric) on Endorser nodes. Consensus is
achieved (or not) between multiple endorser nodes and a
token passed back to the application

•	 The application can then submit this, or an ordering
service, which will commit the data to the ledger.

APPLICATION
(SDK)

TRANSACTION
Reads
Writes

TRANSACTION
Reads
Writes

Receive batch (block)
of transactions from
ordering service

ENDORSING PEER
 Execute chaincode to
 simulate proposal in peer

• Query state DB for reads
• Build RWSet

COMMITTING PEER (ALL PEERS)
 Validate each transaction and commit block

• Validate endorsement policy (VSCC)
• Validate ReadSet versions in state DB (MVCC)
• Commit block to blockchain
• Commit valid trans to state DB

7

6

Submit transaction
(includes RWSet)4

Send proposal
response back
(includes RWSet)

3
Submit

proposal

1

2
ORDERING
 SERVICE
 Ordering service
creates batch (block)
of transactions

5

Source:
https://www.ibm.com/developerworks/cloud/library/cl-top-technical-advantages-of-hyperledger-fabric-for-
blockchain-networks/index.html

18 FLIGHTCHAIN WHITE PAPER | © SITA 2017

VM SYSTEM REQUIREMENTS

CPU
As with Ethereum, the system requirements are also modest.
For FlightChain, each node is running on an AWS t2.small
instance – and even then, the CPU consumption is generally
less than 10%. Although it must be noted that the transaction
throughput for FlightChain at this stage is < 5 per second.

Memory
Equally the memory requirements are quite low – the parity
client consumes < 0.5 Gb. This will of course vary depending
on the number of smart contracts deployed and the usage of
those contracts, and the number of transactions recorded
over time.

Disk Requirements
The disk space requirement has a direct correlation with
the number of transactions (in FlightChain, the number of
flight updates) - the more flight data recorded, the more
space required. Disk utilization is efficient, and there isn’t
any significant overhead required by Parity beyond the
data passed to the FlightChain contract. As an illustration,
three months of flight updates for all flights into and out
of LHR, GVA, and MIA (about 1.3m transactions) occupies
approximately 11Gb.

SMART CONTRACT
Fabric Smart Contracts are known as chain code and have
many similarities with Ethereum smart contact concepts.
They can be written in ‘go’ and support for Java is in the
pipeline. Chain code is deployed onto, and executed on,
the Endorsing Nodes in a Fabric network. The chain code
is executed across multiple endorsing nodes and when
consensus is reached across these nodes the smart contract
output can then be sent to the committing peer(s) and only at
this point is the data stored on the network.

19FLIGHTCHAIN WHITE PAPER | © SITA 2017

The logic flow for the FlightChain smart contract is shown below. Note that the HTTP return codes indicate that there is a REST
API wrapping the FlightChain smart contract.

APPENDIX C – FLIGHTCHAIN
SMART CONTRACT

New flight
recorded on
blockchain

Return
HTTP 200

Return
HTTP 403
Forbidden

Return
HTTP 401

Unauthorised

Update all
data except

imutable data

ACRIS
Flight Data

Imutable Data

The following fields cannot be changed. They
form the unique key that identifies the flight.

-OriginDate
-DepartureAirport
-OperatingAirline
-FlightNumber
-Departure.Scheduled
-Arrival.Scheduled

Who is
sender of

data?

Flight
already
exists?

Is there
arrival data in

the update?

Operating
Airline

Departure Airport

No

No

No
Yes

Yes

Yes

Arrival Airport

Other

Is there
departure data
in the update?

© SITA 17-THW-117-1
All trademarks acknowledged. Specifications subject to change without prior notice. This literature provides outline
information only and (unless specifically agreed to the contrary by SITA in writing) is not part of any order or contract.

For further information,
please contact SITA by
telephone or e-mail:

Americas
+1 770 850 4500
info.amer@sita.aero

Asia Pacific
+65 6545 3711
info.apac@sita.aero

Europe
+41 22 747 6000
info.euro@sita.aero

Middle East, India & Africa
+961 1 637300
info.meia@sita.aero

Follow us on www.sita.aero/socialhub

SITA AT A GLANCE

Easy air travel every step of the way.
Transforming air travel through technology for
Airlines, at Airports, on Aircraft and at Borders.

	 SITA’s vision is: ‘Easy air travel every step of the way’.

	� Through information and communications technology, we
help to make the end-to-end journey easier for passengers –
from pre-travel, check-in and baggage processing, to boarding,
border control and inflight connectivity.

	� We work with about 400 air transport industry members and
2,800 customers in over 200 countries and territories. Almost
every airline and airport in the world does business with SITA.

	� Our customers include airlines, airports, GDSs and
governments.

	� Created and owned 100% by air transport, SITA is the
community’s dedicated partner for IT and communications,
uniquely able to respond to community needs and issues.

	� We innovate and develop collaboratively with our air transport
customers, industry bodies and partners. Our portfolio and
strategic direction are driven by the community, through the
SITA Board and Council, comprising air transport industry
members the world over.

	� We provide services over the world’s most extensive
communications network. It’s the vital asset that keeps the
global air transport industry connected.

	� With a customer service team of over 2,000 people around
the world, we invest significantly in achieving best-in-class
customer service, providing 24/7 integrated local and global
support for our services.

	� Our annual Air Transport and Passenger IT Trends Surveys
for airlines, airports and passengers are industry-renowned,
as is our Baggage Report.

	� In 2016, we had consolidated revenues of US$ 1.5 billion.

For further information, please visit www.sita.aero

